Role of a putative polysaccharide locus in Bordetella biofilm development.

نویسندگان

  • Gina Parise
  • Meenu Mishra
  • Yoshikane Itoh
  • Tony Romeo
  • Rajendar Deora
چکیده

Bordetellae are gram-negative bacteria that colonize the respiratory tracts of animals and humans. We and others have recently shown that these bacteria are capable of living as sessile communities known as biofilms on a number of abiotic surfaces. During the biofilm mode of existence, bacteria produce one or more extracellular polymeric substances that function, in part, to hold the cells together and to a surface. There is little information on either the constituents of the biofilm matrix or the genetic basis of biofilm development by Bordetella spp. By utilizing immunoblot assays and by enzymatic hydrolysis using dispersin B (DspB), a glycosyl hydrolase that specifically cleaves the polysaccharide poly-beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc), we provide evidence for the production of poly-beta-1,6-GlcNAc by various Bordetella species (Bordetella bronchiseptica, B. pertussis, and B. parapertussis) and its role in their biofilm development. We have investigated the role of a Bordetella locus, here designated bpsABCD, in biofilm formation. The bps (Bordetella polysaccharide) locus is homologous to several bacterial loci that are required for the production of poly-beta-1,6-GlcNAc and have been implicated in bacterial biofilm formation. By utilizing multiple microscopic techniques to analyze biofilm formation under both static and hydrodynamic conditions, we demonstrate that the bps locus, although not essential at the initial stages of biofilm formation, contributes to the stability and the maintenance of the complex architecture of Bordetella biofilms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and evaluation of glycerol teichoic acid from biofilm forming Staphylococcus epidermidis as a putative vaccine candidate

Introduction: Biofilm forming Staphylococcus epidermidis is a main causative agent of infections related to medical devices. Purification and evaluation of Gly-TA polysaccharide from a biofilm-forming S. epidermidis as a putative vaccine candidate were the main goals of the current study. Methods: Taking advantage of size exclusion chromatography procedure, glycerol teichoic acid (Gly-TA) was p...

متن کامل

Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae.

Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence i...

متن کامل

Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri.

The symbiosis polysaccharide locus, syp, is required for Vibrio fischeri to form a symbiotic association with the squid Euprymna scolopes. It is also required for biofilm formation induced by the unlinked regulator RscS. The syp locus includes 18 genes that can be classified into four groups based on putative function: 4 genes encode putative regulators, 6 encode glycosyltransferases, 2 encode ...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

بررسی تشکیل بیوفیلم در ایزوله‌های بوردتلا پرتوسیس با روش in vitro biofilm formation

Background and Objective: Bordetella pertussis is a gram-negative cocobacilli bacterium and etiologic agent of whooping cough that in recent years, the number of its cases is on the rise. The ability of biofilm production helps this bacterium in interference with host immune system, severity of illness and antibiotic sensitivity. Thus, due to the importance of this factor, in this investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 3  شماره 

صفحات  -

تاریخ انتشار 2007